Post - Newtonian approximation for isolated systems calculated by matched asymptotic expansions

نویسنده

  • Luc Blanchet
چکیده

Two long-standing problems with the post-Newtonian approximation for isolated slowly-moving systems in general relativity are : (i) the appearance at high post-Newtonian orders of divergent Poisson integrals, casting a doubt on the soundness of the post-Newtonian series; (ii) the domain of validity of the approximation which is limited to the near-zone of the source, and prevents one, a priori, from incorporating the condition of no-incoming radiation, to be imposed at past null infinity. In this article, we resolve the problem (i) by iterating the post-Newtonian hierarchy of equations by means of a new (Poisson-type) integral operator that is free of divergencies, and the problem (ii) by matching the post-Newtonian near-zone field to the exterior field of the source, known from previous work as a multipolar-post-Minkowskian expansion satisfying the relevant boundary conditions at infinity. As a result, we obtain an algorithm for iterating the post-Newtonian series up to any order, and we determine the terms, present in the post-Newtonian field, that are associated with the gravitational-radiation reaction onto an isolated slowly-moving matter system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transient Natural Convection Flow on an Isothermal Vertical Wall at High Prandtl Numbers: Second-Order Approximation

The method of matched asymptotic expansions, which has been used in previous studies of steady natural convection flow, is extended here to transient natural convection flow at high Prandtl number (Pr). Second-order expansion solutions, valid for large Prandtl numbers, are presented for the transient natural convection flow near a vertical surface which undergoes a step change in temperature. T...

متن کامل

The binary black-hole problem at the third post-Newtonian approximation in the orbital motion: Static part

Post-Newtonian expansions of the Brill-Lindquist and Misner-Lindquist solutions of the timesymmetric two-black-hole initial value problem are derived. The static Hamiltonians related to the expanded solutions, after identifying the bare masses in both solutions, are found to differ from each other at the third post-Newtonian approximation. By shifting the position variables of the black holes t...

متن کامل

Second Order Moment Asymptotic Expansions for a Randomly Stopped and Standardized Sum

This paper establishes the first four moment expansions to the order o(a^−1) of S_{t_{a}}^{prime }/sqrt{t_{a}}, where S_{n}^{prime }=sum_{i=1}^{n}Y_{i} is a simple random walk with E(Yi) = 0, and ta is a stopping time given by t_{a}=inf left{ ngeq 1:n+S_{n}+zeta _{n}>aright}‎ where S_{n}=sum_{i=1}^{n}X_{i} is another simple random walk with E(Xi) = 0, and {zeta _{n},ngeq 1} is a sequence of ran...

متن کامل

A simple model for accretion disks in the post-Newtonian approximation

p { margin-bottom: 0.1in; direction: ltr; line-height: 120%; text-align: left; }a:link { } In this paper, the evolution of accretion disks in the post-Newtonian limit has been investigated. These disks are formed around gravitational compact objects such as black holes, neutron stars, or white dwarfs. Although most analytical researches have been conducted in this context in the framework o...

متن کامل

Post-Newtonian Methods: Analytic Results on the Binary Problem

A detailed account is given on approximation schemes to the Einstein theory of general relativity where the iteration starts from the Newton theory of gravity. Two different coordinate conditions are used to represent the Einstein field equations, the generalized isotropic ones of the canonical formalism of Arnowitt, Deser, and Misner and the harmonic ones of the Lorentz-covariant Fock-de Donde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008